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NUMERICAL SOLUTION OF PROBLEMS PERTAINING TO A SUBMERGED JET IN
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Power-law fluids are defined as the particular case of Stokes fluids for
Iow Truesdell numbers. To describe motion in a submerged jet we em-
ploy boundary-layer type equations which are numerically solved on a
Ural-2 computer.

§1. Definition of power-law fluids. In accordance
with the classical concepts, stresses in a fluid are
functions of the spatial velocity gradient. According
to the principle of objectivity formulated by Noll [1],
the stressed tensor in the rheological equation of state
must be an isotropic function of the strain-rate ten-
sor

Pij = f(sii)‘ (1

Fluids described by Eq. (1) are subdivided into two
classes: Reiner-Rivlin fluids which exhibit a relaxa-
tion time, and Stokes fluids which exhibit no relaxa-
tion time [2]. For Stokes fluids Eq. (1) assumes the
particular form

Pij =f(3n': o, o),

if s; =0, then p; =—p§;. (2)

Here yg is the constant of the medium, and it is ex-
pressed in units of viscosity; 6y is a characteristic
temperature (for example, the boiling point); p is the
hydrostatic pressure; ‘5ij is the Kronecker delta.

Following the usual rule for expansion in series in
powers of the tensor and using the Cayley-Hamilton
identity, instead of (2) we will have

pj= Foaij +F135j “[‘Fzsiksk]» (3)

where for an incompressible fluid ¥y = —p; Fy; and F,
are functions of the strain-rate tensor invariance I,

n | 0.5 0.7 1.0 2.0 3.0 4.0
|
)] ‘ 0.18650 | 0.31100 | 0.45430 | 0.71166 | 0.83024 | 0.89794
k f 5.36187 | 2.44280 | 1.48305 | 1.00000 | 0.95455 | 0,95785
I3 and the constants y; and 6.
Since the complexes
F F F
Ey="2, ==L, = "2 (4)
P Bo Ho

are dimensionless, for an incompressible fluid Eq.
(3) assumes the following dimensionless form:

E
E-Z) o Exsy- (5)

S;
Py = PEsd; + (1 + L
p 1
In formula (5) the dimensionless parameter Tr =
= HoSjj /P, known as the Truesdell number, is the crite~
rion for the appearance of nonlinear effects.
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Velocity profiles in jet for certain values of n:
1) n=0.5; 2) 1; 3) 3.

In the following we will examine the case Tr « 1,
when the tensorial nonlinearity in (3) can be neglected,
and the nonlinearity will be determined by the coeffi-
cient Fy = f(I;,13,13). For simplicity we will study the
case

n—1

F1=H1I212}T- (6)

The validity of this relationship has been confirmed
experimentally in [3). The rheological equation (3) now
assumes the following form:

n—~1

sz'-:"“P‘{‘!th]z]Z S (7)

In dimensionless form, the boundary~layer equations
have the following form [4]:

ou ou ap 0 Ou =t Ou
U — +0— = — — —_— —t
ox Jy 0x + ay{ dy ay}
9 _g (8

oy " ox Oy

§2, The problem of the submerged jet. The possi-
bility of utilizing equations of the boundary-layer type
to model motion in a submerged jet has been validated
in [5). Here 8p/8x = 0 and system (8) assumes the
form

ou ou =~ 0 { Ou [*—1 Ou
u — + R T I v ’
ox oy dy dy oy }
LA (9

ax dy
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Without carrying out the complete group analysis
of system (9), let us write out the infinitesimal opera-
tors of the similarity group, with respect to which we
have the invariance

1 0 n—1 9 a

Xi= U — - U — 4 X —,
2—n Ju 2—n v ox
oo R, 0 a1 09
2—n  Ou 2—n v oy

Let us find the invariant-group solution determined
from the combination of the operators X; and Xj3. Ac-
cording to the general method [6], this solution must
be determined from the condition

kX, + X;=0. (10)

Then we will have

{2n—~1ym—n
w=xmi(m), v=x "

{2—n)m—1

=+ (11)

J2(m), n="gx

We can demonstrate in the conventional manner [5]
that the condition of conservation of momentum exists
along the jet, i.e.,

j utdy =2 5 wdy =1,

o 0

which, with consideration of (11), assumes the form

2 | By =1. (12)
0

Substituting (11) into (9) with consideration of (12),
with the usual boundary conditions [5] implicit, after
introduction of the stream function

, 1 2 :
J1=f’J2=*——3;f+§Tif (13)

we will have the boundary problem for the determina-
tion of f:

8 174 1 1 ’2
P+ =+ ) =0,

3n
FO=F©=0, f(=)=0,2 dy=1. (19
: 0
Since f" = 0 in the submerged jet, it is convenient to
carry out the following substitution of variables:

subsequent to which Eq. (14) assumes the form

i1

s I 7? 12
L. (p9"+ ¢ ) =0 (15)
1l

The integration of Eq. (15) with consideration of the
boundary conditions in (14) leads to the following for-
mula for the determination of the velocity profile:

ﬁl n
_n . 73 2n—1
@ =(—1) 1 [C_M,j . (16)
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Here c is the magnitude of the velocity at the jet axis.
Analysis of formula (16) shows that analytical solu-
tions with physical significance do not exist for all n.
When n < 1 the velocity profiles tend asymptotically
toward zero as the argument approaches infinity, while
for n > 1 the asymptotic property is disrupted. In this
connection, certain of the results from [7] are cast in
doubt.

Since Eq. (15) is invariant with respect to the sim-
ilarity transform

n=Y§’

we can turn from the boundary problem (15) and (14)
to the equivalent Cauchy problem

q)un—-l Q)"' . L (CD CD” + (D’z) — 0’
3n
®0)=D"(0) =0, O (0) = —1, (17)

whose solution permits us to determine the unknown
parameter v according to the formula

ve= 1 . (18)

n—2

[2 f o*d g]?
0

We note that near zero Eq. (17) exhibits a singularity,
which is a serious inconvenience in numerical calcu-

lation. However, as § -0, &' — -1, " — 0, & — 0,
Eq. (17) is equivalent to the following:

q)/rﬂ—l (D/// . L = Q. (19)

Integrating (19), we have a representation for the func-
tion & near zero:

: 5 n-t1

n “n

D=—¢ (1~ — E ) (20)
V34 DEn+1)

Now instead of (17) we have an original problem that is
convenient for numer_ical realization:

(D//n-—lq)lll _ % ((D @ -+ @,2 ) — 0’

whent =&, @ =@, @ =, O"== @y . (21)

The quantities &;, ®] and &§ are determined in this
case from formula (20},

System (21) was solved according to the Runge-Kutta
formula with automatic selection of the pitch for a
specified calculation accuracy on the order of 107%;
the integral in formula (18) was calculated in accord-
ance with the Simpson formula. All of the calculations
were carried out on a Ural-2 computer. The quantity
£y was determined experimentally, We know that with
n equal to unity Eq. (14) has an exact solution, and
the unknown value of the velocity at the jet axis f'(0)
is equal to 0.454 [5]. Assuming the quantity &, to be
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equal to 1073, solving (21) numerically, and calculat-
ing v accordingto (18), we find that f'(0) equals 0.45430.
We regard this agreement as satisfactory and assume
in the following that £&; is equal to 1073, For purposes
of comparison we present the values of the velocity at
the jet axis f7(0) for various values of n:

The figure shows the profiles of the velocity &7(£)
for several n. Analysis of the cited results shows that
with an increase in n there is an increase in the veloc-
ity at the jet axis, while for n smaller than unity, the
profiles are fuller than when n is larger than unity.

NOTATION

x and y are the longitudinal and transverse coor—
dinate; u and v are the longitudinal and transverse
velocities in the boundary layer; Pij is the tensor; Sij
is the strain-rate tensor; p is the hydrostatic pres-
sure; Ij, I, and I3 are theinvariants of the strain-rate
tensor,
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